• 首页
  • 关于杂志
  • 征稿简则
  • 杂志稿约
  • 特色专刊
  • 投稿指南
  • 审稿指南
  • 期刊订阅
  • 在线留言
引用本文:[点击复制]
[点击复制]
【打印本页】   【在线阅读全文】    【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载次 本文二维码信息
码上扫一扫!
基于机器学习的致洪强降雨分类方法研究
许晶,孔文甲,赵斐,姚晓娟,张连霞,杨海迪
0
字体:加大+|默认|缩小-
(内蒙古自治区鄂尔多斯市气象局;内蒙古自治区气象局)
摘要:
[目的]为应用多普勒天气雷达数据客观定量分析致洪强降雨回波特征,根据不同回波类型,有针对性地采取措施,规范化、标准化发布预警信息。[方法]利用无监督机器学习中的K-均值聚类分析方法,对2005-2022年呼和浩特地区68次洪涝灾害事件中的4个关键特征(回波强度、面积、梯度以及强回波面积占比)进行自动学习和分组分析。[结果]结合业务实践制定了致洪强降雨天气雷达回波的分类标准,标准将回波分为4类:大范围强降水、中尺度强降水、中尺度较强降水和稳定性降水回波。利用2023年6-8月呼和浩特降雨个例,对致洪强降雨分类标准进行验证。该分类标准在2023年7月2日的应用中,分析雷达回波面积增速与自动雨量计数据可知强降水主要发生在强回波面积增速较大时间段,综合各雷达特征数据表明回波强度均值、强回波面积占比能更早地反映强降水的性质,对预警有指示作用。[结论]经过2023年的应用检验,基于机器学习的致洪强降雨分类标准具有业务应用价值。为准确识别不同类型的致洪降雨提供科学依据。
关键词:  雷达特征;预警指标;山洪暴发
DOI:
投稿时间:2024-04-22修订日期:2024-08-24
基金项目:鄂尔多斯市重点研发计划项目(YF20240033);内蒙古自治区气象局科技创新项目(nmqxkjcx202427、nmqxkjcx202441、nmqxkjcx202420);中国气象局复盘总结专项(FPZJ2025-023、FPZJ2024-020)。
Research on Classification Method of Heavy Rainfall Causing Floods Based on Machine Learning
XU Jing,KONG Wenjia,ZHAOFei,YAO Xiaojuan,ZHANG Lianxia,YANG Haidi
(Ordos Meteorological Office of Inner Mongolia Autonomous Region;Inner Mongolia Meteorological Service)
Abstract:
To objectively and quantitatively analyze the echo characteristics of flood-inducing heavy rainfall using Doppler weather radar data, to take targeted measures based on different echo types, and to release standardized and normalized early warning information, this paper utilizes clustering analysis, an unsupervised machine learning method, to automatically learn and analyze four key features(echo intensity, area, gradient, and proportion of strong echo area) from 68 flood disaster events in Hohhot from 2005 to 2022, and performs grouping analysis based on these characteristics. A classification standard for weather radar echoes of flood-inducing heavy rainfall has been established. Based on operational practices, the echoes are subdivided into four major categories:large-scale heavy precipitation, mesoscale heavy precipitation, mesoscale moderately heavy precipitation, and stable precipitation echoes. The classification standard of flood-inducing heavy rainfall is verified by the rainfall cases in Hohhot from June to August 2023. In the application analysis on the July 2, 2023 event, the area growth rate and automatic rain gauge data suggest that heavy precipitation primarily occurs in the period of obviously growing area of strong echoes. Comprehensive analysis of various radar characteristic data indicates that the mean echo intensity and the proportion of strong echo area can reflect the nature of heavy precipitation earlier, which can serving as indicators for early warning. The results show that the"Classification standard of flood-inducing heavy rainfall based on machine learning" has demonstrated operational application value in forecasting and early warning through the verification in 2023. The establishment of this classification standard provides a scientific basis for accurately identifying different types of flood-inducing rainfall.
Key words:  radar feature; warning indicator; mountain torrents
您是本站第  1545930  位访问者!
版权所有:《山地气象学报》编辑部    黔ICP备2022007021号
主办:贵州省山地气象科学研究所 贵州省气象学会 地址:贵阳市南明区新华路翠微巷9号 邮政编码:550002
电话:0851-85202213 电子邮箱:gzqx-1019@163.com

贵公网安备 52010202002055号

技术支持:北京勤云科技发展有限公司