• 首页
  • 关于杂志
  • 征稿简则
  • 杂志稿约
  • 特色专刊
  • 投稿指南
  • 审稿指南
  • 期刊订阅
  • 在线留言
引用本文:[点击复制]
[点击复制]
【打印本页】   【在线阅读全文】    【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载次 本文二维码信息
码上扫一扫!
长潭岗水库汛期日平均进库流量预报模型设计
米楚阳,顾雪,卿湘涛,郑福维
0
字体:加大+|默认|缩小-
(湖南省湘西土家族苗族自治州气象局)
摘要:
摘要:为了指导长潭岗水库安全、高效运行,保护下游人民生命财产,本文对长潭岗水库的日平均进库流量进行了建模。本文使用水库上游集雨面积的降水量、蒸发量资料以及水库的日平均进库流量数据建立人工神经网络模型,通过对模型隐含层和输出层的层函数进行不同的组合,得到了4种复杂程度和表达能力逐渐增加的模型。各模型训练结果较好,验证结果均能在0.05的显著性水平上通过检验,其中模型2111(第一隐含层为一元二次线性函数其余层次均为一元一次线性函数)的效果最好,层函数的复杂程度对峰值输出的准确度有一定的正面的贡献。该模型能够满足气象局的专业气象服务需求。
关键词:  长潭岗水库、进库流量、相关性分析、人工神经网络
DOI:
投稿时间:2022-06-02修订日期:2022-12-13
基金项目:湖南省气象局短平快课题(湘气函〔2021〕45号):湘西州暴雨强度与暴雨雨型研究
Design of daily average inflow forecast model of Changtangang Reservoir in flood season
michuyang,guxue,qingxiangtao,zhengfuwei
(Meteorological Bureau of Xiangxi Tujia and Miao Autonomous Prefecture, Hunan Province)
Abstract:
Abstract: Changtangang Reservoir is a medium-sized water conservancy project with flood control and various comprehensive benefits, accurate inflow flow prediction is of great significance to guide the safe and efficient operation of the reservoir and protect the safety of people"s lives and property downstream. In this paper, the artificial neural network model is established by using the precipitation and evaporation data of the rainwater collection area in the upper reaches of the reservoir and the daily average inflow data of the reservoir. By combining the layer functions of the hidden layer and the output layer of the model, four models with increasing complexity and expression ability are obtained. The training results of each model are good, and the validation results can pass the test at the significance level of 0.05, model 2111 (the first hidden layer is a univariate quadratic linear function, and the other levels are univariate linear functions) has the best effect, the complexity of layer function has a certain positive contribution to the accuracy of peak output. It can be better used in the business services of the Meteorological Bureau.
Key words:  precipitation, evaporation, inflow, correlation analysis, artificial neural network
您是本站第  1545407  位访问者!
版权所有:《山地气象学报》编辑部    黔ICP备2022007021号
主办:贵州省山地气象科学研究所 贵州省气象学会 地址:贵阳市南明区新华路翠微巷9号 邮政编码:550002
电话:0851-85202213 电子邮箱:gzqx-1019@163.com

贵公网安备 52010202002055号

技术支持:北京勤云科技发展有限公司