摘要: |
利用2018年1~10月华南3Km区域高分辨率模式08:00、20:00起报的气温预报和实况资料,采用线性内插法进行站点预报值处理,并从平均均方根误差及预报准确率的角度,检验分析了贵州省72h预报内逐24h最高(低)气温预报质量。结果表明,72h内随着预报时效的增加,预报准确率差异较小;日最低气温预报准确率相对最高气温平均高出20%左右;08:00起报的最高(低)气温预报优于20:00的。同时发现,最高(低)气温的预报能力在月份上存在明显差异,6~8月预报性能总体优于其它月份;在24~48h预报中,东北-西南向一带较贵州其它区域展现出更高的预报能力。在9个主要城市站上,最高(低)气温均表现出较高的预报技巧,其中,20:00起报的兴义站24h最低气温准确率100%。通过对2018年7月18日气温预报质量检验,最高(低)气温及35.0℃以上高温事件预报准确率均在80%左右,较好反映了天气实况。因此,华南3Km高分辨率区域模式对贵州气温预报具有较好的参考价值。 |
关键词: 华南;高分辨率;气温;检验 |
DOI: |
投稿时间:2019-05-28修订日期:2019-08-13 |
基金项目:气象预报业务关键技术发展专项(YBGJXM(2019)03-07):复杂山地背景下网格要素预报订正技术研发; 国家预报员专项(CMAYBY2016-065):深秋初冬时节静止锋减弱北抬对贵州气温的差异性分析;2019年贵州省气象台业务项目:贵州省实况格点偏差订正及研究。 |
|
Quality test of 3km high resolution regional model temperature prediction in Guizhou province |
LI Gang,PENG Fen,KONG Dexuan,LIU Yanhua,WU Lei,LI Yanlin |
(Guizhou Meteorological Observatory;Guizhou Institute on Mountainous Environment and Climate;Meteorological Office of southwestern Guizhou) |
Abstract: |
According the comparison between observation temperature from station and 3Km meso-scale model for south China temperature forecast starting at 00:00 GMT and 12:00 GMT from January to October of 2018 over Guizhou. By using bilinear interpolation method, the characteristics of 24-72h prediction errors of daily maximum(minimum)are analyzed. The result show that the prediction performance rarely change with increase forecast time, also the forecast accuracy scores of minimum temperature exceeds 20% for the maximum temperature, also accuracy of the predicted temperature starting at 00:00 GMT is better than 12:00 GMT. In addition, there is obvious month‘s variation, higher in June to August compared with other months. Meanwhile the northeast-southwest area showed higher forecasting skills than other areas in the 24-48h. In each observation station, the maximum (minimum) temperatures shows higher forecasting skills, also the prediction accuracy of 24h minimum temperature at Xingyi station reached 100% at 12:00 GMT. Through the test of the case July 18, 2018, the maximum(minimum)temperature and high temperature events forecast accuracy are around 80%。Compared to local temperature forecast, the meso-scale model are of more reliable reference significance. |
Key words: South China;high resolution;temperature;verification |